165 research outputs found

    Heritage and Resilience: Issues and Opportunities for Reducing Disaster Risks

    Get PDF
    This paper examines the unique role of cultural heritage in disaster risk reduction. Itintroduces various approaches to protect heritage from irreplaceable loss and considers ways to draw upon heritage as an asset in building the resilience of communities and nations to disasters. The paper proposes ways forward and builds on the current momentum provided by the Hyogo Framework for Action 2005-2015: Building the Resilience of Nations and Communities to Disasters” (HFA) and the advancement of a post-2015 framework for disaster risk reduction (HFA2) and the post-2015 development agenda. Cultural heritage is often associated with grandiose monuments and iconic archaeological sites that can hold us in awe of their beauty, history and sheer scale. However, the understanding of cultural heritage has undergone a marked shift during the last few decades in terms of what it is, why it is important, why it is at risk and what can be done to protect it. Cultural heritage today encompasses a broader array of places such as historic cities, living cultural landscapes, gardens or sacred forests and mountains, technological or industrial achievements in the recent past and even sites associated with painful memories and war. Collections of movable and immoveable items within sites, museums, historic properties and archives have also increased significantly in scope, testifying not only to the lifestyles of royalty and the achievements of great artists, but also to the everyday lives of ordinary people. At the same time intangibles such as knowledge, beliefs and value systems are fundamental aspects of heritage that have a powerful influence on people’s daily choices and behaviors. Heritage is at risk due to disasters, conflict, climate change and a host of other factors.At the same time, cultural heritage is increasingly recognized as a driver of resilience that can support efforts to reduce disaster risks more broadly. Recent years have seen greater emphasis and commitment to protecting heritage and leveraging it for resilience;but initiatives, such as the few examples that are presented here, need to be encouraged and brought more fully into the mainstream of both disaster risk reduction and heritage management. These are issues that can be productively addressed in a post-2015 framework for disaster risk reduction and, likewise, in the post-2015 development agenda

    Unusual incidence of pneumothorax following general Anaesthesia

    No full text

    Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications

    No full text

    Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceMeasurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016–2018, and correspond to an integrated luminosity of 138 fb1^{−1}. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant tt \textrm{t}\overline{\textrm{t}} background. A cross section of 79.2±0.9(stat)8.0+7.7(syst)±1.2(lumi) 79.2\pm 0.9{\left(\textrm{stat}\right)}_{-8.0}^{+7.7}\left(\textrm{syst}\right)\pm 1.2\left(\textrm{lumi}\right) pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics.[graphic not available: see fulltext
    corecore